منابع مشابه
Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators
In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.
متن کاملDistorted Hankel Integral Operators
For α, β > 0 and for a locally integrable function (or, more generally , a distribution) ϕ on (0, ∞), we study integral ooperators G α,β ϕ on L 2 (R +) defined by G α,β ϕ f (x) = R+ ϕ x α + y β f (y)dy. We describe the bounded and compact operators G α,β ϕ and operators G α,β ϕ of Schatten–von Neumann class S p. We also study continuity properties of the averaging projection Q α,β onto the oper...
متن کاملEigenstructure of nonlinear Hankel operators
This paper investigates the eigenstructure of Hankel operators for nonlinear systems. It is proved that the variational system and Hamiltonian extension can be interpreted as the Gâteaux differentiation of dynamical input-output systems and their adjoints respectively. We utilize this differentiation in order to clarify the eigenstructure of the Hankel operator, which is closely related to the ...
متن کاملHankel Multipliers and Transplantation Operators
Connections between Hankel transforms of different order for L-functions are examined. Well known are the results of Guy [Guy] and Schindler [Sch]. Further relations result from projection formulae for Bessel functions of different order. Consequences for Hankel multipliers are exhibited and implications for radial Fourier multipliers on Euclidean spaces of different dimensions indicated.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal d'Analyse Mathématique
سال: 2017
ISSN: 0021-7670,1565-8538
DOI: 10.1007/s11854-017-0030-7